If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+2703
We move all terms to the left:
0-(-16t^2+2703)=0
We add all the numbers together, and all the variables
-(-16t^2+2703)=0
We get rid of parentheses
16t^2-2703=0
a = 16; b = 0; c = -2703;
Δ = b2-4ac
Δ = 02-4·16·(-2703)
Δ = 172992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172992}=\sqrt{64*2703}=\sqrt{64}*\sqrt{2703}=8\sqrt{2703}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2703}}{2*16}=\frac{0-8\sqrt{2703}}{32} =-\frac{8\sqrt{2703}}{32} =-\frac{\sqrt{2703}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2703}}{2*16}=\frac{0+8\sqrt{2703}}{32} =\frac{8\sqrt{2703}}{32} =\frac{\sqrt{2703}}{4} $
| -33=-17+6x | | 15x-4x+6x=+3+21 | | 4/b-2=3-b | | -7(7x-2)=-476 | | 2/7x+1/2x+7/28x=31 | | 7t-1=5t+4 | | ((2x+15)^2)+((3x+25)^2)=180 | | 7t-1+5t+4=180 | | q+22.54=32.9 | | 2.5=(10x+8)+3x | | 2=x-11x= | | x-12=4x+36 | | 12(x-20)=372 | | 2×13-5y/2+y=9 | | z+7.1=12.4 | | 4x+2=38+x | | 0=-16t^2+2113 | | 56÷x=8x= | | z/–2+12=16 | | -3m+5=20 | | 5(a-7)=44 | | 2y-19=15 | | n+1.4=0,72 | | -6b-2=40 | | 4(3x=8)=-38+34 | | 2b+8−5b+3=-13+8b−5−4 | | t+80/7 = 1 | | –4=–10+2b | | -1=a/2+(-6) | | 0=-16t^2+2716 | | c2 + 8 = 10 | | (4-x)^-3=64 |